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A S Y M P T O T I C  M E T H O D S  IN D Y N A M I C  C O N T A C T  

P R O B L E M S  F O R  A N  ELASTIC H A L F - S P A C E  

E. V. Kovalenko I and V. B. Zelentsov 2 UDC 539.3 

The following dynamic contact problems of the theory of elasticity are considered: (1) the problem of 
antiplane shear of an elastic half-space by a punch and (2) the plane problem of pressing of a punch into an 
elastic half-plane. We assume that at time t = 0, a force that varies arbitrarily in time is applied to the punch. 

To solve these dynamic problems, we apply the Laplace-Carson transform with respect to time and 
the Fourier transform with respect to the spatial coordinate. As a result, the Laplace-Carson-transformed 
contact stress problems axe reduced to Fredholm integral equations of the first kind of the convolution type 
on a finite interval, with kernels depending on the dimensionless parameter A E (0, c~) related to time. 

To solve these equations, we used the methods of [1, 2]. For large and small values of A, which correspond 
to large and small times of interaction of a punch and a half-space, simple analytical solutions are obtained 
in several forms, each of which is effective in its region of variation of the parameter A. Calculations have 
shown that these regions overlap the entire possible range of variation of A. To obtain the final solution of the 
problems, in the resulting formulas, we go over from the Laplace--Carson transform of unknown functions to 
their originals. 

1. Let an isotropic elastic half-space be subjected to pure shear under the effect of an infinite 
undeformable band of width 2a loaded along its generatrix by a shearing force T(t)  = Tof( t )  [f(t) is a 
bounded function with a finite number of discontinuity lines for t t> 0] related to a unit length. We assume 
ideal contact between the surfaces of the band and the half-space. We choose an orthogonal coordinate system 
Ozyz.  The contact plane y = 0 coincides with the interface between the band and the half-space; the half-space 
occupies the region y ~< 0. The z axis is directed along the band's generatrix. 

The problem is reduced to the solution of the differential equation 

1 O2w G A - -  Jr (1.1) 
= = p ,  , 

which results from the Lam6 equations in the absence of mass forces under the boundary conditions (1.2) 

y = 0: w = (Ixl <. a),  ry, = 0 (Ixl > a) (1.2) 

and the initial conditions 

t = 0 :  w = 0 ,  0 w / 0 t = 0 .  (1.3) 

Here w(x,  y, t) is the projection of the displacement vector onto the z axis, p and G are the density and shear 
modulus of the material of the elastic half-space, ryz is the tangential component of the stress tensor, and 
"/f(t) is a function that characterizes the rigid displacement of the band. 

We shall solve the mixed boundary-value problem (1.1)-(1.3) using integral transforms [3]. Applying 

l Institute for Mechanics Problems, Russian Academy of Sciences, Moscow 117526.2Research Institute 
of Mechanics and Applied Mathematics of the Rostov State University, Rostov-on-Don 344104. Translated 
from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 38, No. 1, pp. 111-119, January-February, 1997. 
Original article submitted September 21, 1995. 

0021-8944/97/3801-0101" $18.00 Q 1997 Plenum Publishing Corporation 101 



the Laplace--Carson transform with respect to time 

w l~=p  w(z,y , t )e-Ptdt ,  w = ~ r i  
o L 

we obtain the following boundary-value problem for the function wt'(x, y,p): 

A w  L = pec~2wL, y = 0: w L = 3'fL(P) (Izl ~< a),  r~= = 0 (Ixl > a). (1.5) 

To solve (1.5), we use the integral Fourier transform with respect to z [1] and write an integral equation with 
respect to the Laplace--Carson-transformed contact shear stresses rL(z,p) .  Using the dimensionless variables 
z = z'a and ~ = ~'a and the notation 7 = 7'a, A = c2(ap) -1, and ~0L(x',p) = rI ' ( z ,p)G -1 (the prime is 
further omitted), we write this equation as 

1 

- 1  

oo 1 
k(s) = / K ( u ) c o s ( u s ) d u  = g0(s),  g ( u )  = vq'-4--~' g(x) - 7, (1.7) 

0 

where Ko(s) is the MacDonald function. 
We consider the second contact problem on frictionless pressing of a rigid punch of width 2a in the 

elastic half-plane [z] < ~ ,  y ~< 0 by the force P(t) = Pof(t) ,  i.e., it is required to find a solution of the Lam~ 
system of equations, which is written for convenience in terms of the wave functions qo(z, y, t) and r  y, t) 
a s  

o + o ( _ 
o-7 _ N r j  N ~4zxr at2 y = o, (1.8) 

o--ff ~-ir y - U~ or2 y 

and is subject to the boundary and initial conditions 

02~~ 02r 02r (lzl<~), 
y = 0 : 2 ~ + Oz-----g Oy---- 5 

1 02~0+(1 )02~0 02r ( c2 ) 
b'ffOy 2 7 - 2  ~ ' z  2 + 2 ~ = O O x O y  b=--,Cl I :~ l>a  , (1.9) 

0q0 0r  = - [7  - r (x) l f ( t )  (1~1 ~< a); 
Oy Oz 

O~o 0r 
t = 0 :  q o = r  0-'T= 0-'T=~ (1.10) 

In (1.8) and (1.9), u is the Poisson ratio for the material of the elastic half-plane, 7f ( t )  is the rigid displacement 
of the punch under the action of the force P(t), and r(x) is a function that describes the punch-base shape. 
Here we confine ourselves to the case in which the force P(t) is applied at the center of the punch collinearly 
to the y axis. 

To (1.8)-(1.10) we apply in sequence the Laplace-Carson integral transform with respect to time and 
the Fourier transform with respect to the z coordinate. Thus, we reduce, as before, the solution of the mixed 
boundary-value problem to the equivalent integral equation in the Laplace-Carson images. This equation in 
the above dimensionless variables takes the form (1.6). The kernel of the equation is representable in the form 
(1.7), where 

2(1 - b2)v/-U-'T"-tYff Z (b 2 < 1). (1.11) 
K(u)  = (2u2 + 1) 2 _ 4 u 2 ~  ~/-ff~--qU- i- 
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In  (1 .6) ,  ~oL(x',p) = qL(x,p)[2G(1 - b2)] - 1 ,  g(a: ' )  = a - l [ -}  , - r ( x ) ] ,  a n d  q L ( z , p )  is t h e  L a p l a c e - C a r s o n  

transformant of contact pressures (dimensionless variables are unprimed). 
2. Before solving the integral equation (1.6), we study the properties of its kernel. It should be 

noted that the function K(r (the kernel symbol) is real, even, and positive throughout the real axis and 
is multivalued in the complex plane ~ = u + iv. In the first of the problems, this function has one pair of 
branching points ~ = +i, while in the second it has two pairs of branching points (~ = 4-i and ~ = +b/) and 
two poles [r = +Ri (R > 1)] located on the imaginary axis. To make the function K(r single-valued, in the 
complex plane we make cuts from point +i to point - i  through a point at infinity for the first problem, and 
for the second problem we make two cuts connecting the branching points b/with i and -b /w i th  - i .  

The asymptotic properties of the function K(~) are as follows: 

N 
g(u)  = A + O(u 2) (u --* 0), ug(u) = 1 + ~ e2nu -2n + O(u -21v-2) (u --* oo). (2.1) 

71=1 

Here A = 1 for the first problem and A = 2b(1 - b 2) for the second problem. 
It follows from (2.1) that, for small s, the asymptotics of the kernel k(s) is of the form [2] 

N 
k(s) = lnlslll(s) +12(s), b ( s ) =  ~'~djis 2i + O(s 2N+2) ( j =  1, 2), (2.2) 

i=0 

where the first several coefficients dji are given by the formulas 
oo ,, / [  \:-,] dlo = -1 ,  dll = -~-, d12 = - ~ ,  d20 = K(u) du, 
0 

r 
3 1 /  a2, = - e2 + [u 2 - u3g( ) + e2(1 - e- )l a 'u 

0 

25 1 f ( e Z ) _ u S g ( u ) + e 4 ( l _ e _ , ) ] d u  d22= ~ e 4 - ~  [u 4 i -~ -  --if-. 
0 

We seek a solution of the integral equation (1.6) for large ,X in the form [2] 

N n 
r = E E tPLn,m(X'P)/~-2n(ln"~) m + O(/~-2N-21nN+I )0" (2.3) 

n=O m=O 

Substituting (2.2) and (2.3) in (1.6), equating expressions of equal powers of A -2 and In A, and taking 
the inverse Laplace-Carson transform of ~L(x,p), we obtain with accuracy up to terms of the order of 
O(A -4 In A) 

1 0 2 10~#21(x,'r) 
qa(x,t) = qaOO(X,t) + A--- ~ Ot---~qa2o(x,t) + "~-~  Jo "~-~'~)2 dr 

C 0 2 lnA 0 2 
A2 0t 2 qo21(x, t) A 2 0 t  2 ~21(x,t) (a = Ap), (2.4) 

1 0 
p2(lnp+12)--t-7,  p - - ~ ,  

 00(x,t) = 

d t+o 

fL(plgL(p) -- "~ f g(r)f(t  -- r) dr; 
- 0  

1 X/1 _ ~2 
1 [ N o ( t ) - f ( t ) /  ~--'z- g'(~)d~] 

~r I~/[-Z-~_ z2 
- 1  
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1 1 

v21(~, t )  = 

1 

- -  d~ f ( ~  - r)(2dn In ]~ -- ~1 + 2d21 + du)qaoo(v, t)(1 -- r2)-l/2dr, 
-1 

2du i ~/1 -- ~2 1 

1 

(2.5) 

t 

No(t) = ] ~(x, t) gz (2.6) 
-1 

(C is the Euler constant). Here, the integrals and derivatives in (2.4) should be understood in the generalized 
sense [3]. 

The following fact is noteworthy. Let, for example, the punch have a flat base [g(x) ~ g = const], 
and f( t)  =_ H(t), where H(t) is the neaviside step function [3]. Mechanically, this means that the punch has 
instantaneously moved for the quantity g under the action of the force N0(t), and it is sustained by the force 
in this state. Then for large t, formulas (2.4) and (2.5) become 

No 
~(x, t) = ~rVV=-~'  (2.7) 

where No = To/(aG) for problem 1 and No = Po/[2aG(1 - b2)] for problem 2, i.e., they degenerate rather 
rapidly into the solution of the corresponding static problem. As is known from [4], for this problem, it is 
impossible to find a relationship between the force No and the rigid displacement of the punch g from condition 
(2.6). 

We construct a solution of the integral equation (1.6) for small A (small time). For this, we use the 
asymptotic method of "small" A [1, 2]. The zeroth term of the asymptotics of the solution of Eq. (1.6) for 
A ~ 0 is representable as 

L[ 1-1"x "~ L[ 1 - x  '~_ L x F - 7 - , p )  , (2.8) 

where ~,L (y, p) and vL(y, p) are solutions of the integral equations of the form 
O0 

/ V L . ( r , p ) k ( v - y ) d r  = 7rgA-lfg(p) (0 ~< y < ~ ) ;  (2.9) 
o 

f vL(v,p)k(v - y)d'r = 7rgA-lfL(p) (lYl < ~r (2.10) 
- - O O  

Here we use the evenness of the function K(u) (lul < or and Theorem 24.4 from [1], according which it will 
suffice to study only Eq. (1.6) with the right-hand side g(x) = g = const. 

The solution of (2.9) can be found by the Wiener-Hopf method [1] if the factorization of the function 
If(a) = K+(a)K_(a) is  used: 

cr 9fZ(P) 1 [ e-i~Y ~L(y,p) = K(v~).-------.~dc~ (c > 0). (2.11) 
AK+(0) 2~'i J -~+ic 

The integral equation (2.10) is solved by means of the integral Fourier transform and the convolution 
theorem [1]: 

vL(y, p) = gfL(p)[AK(O)]-l. (2.12) 

Applying the inverse Laplace-Carson transform to (2.8) and taking into account that A = Ap -1, we 
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write solutions of the formulated problems for A ---* 0 as 

Setting g ( a )  = (1 + (~2)-1/2 in (2.11), (2.12), we have 

whence, in accordance with (2.13), we find a solution of the problem of pure shear of an elastic half-space by 
a punch: 

f '(t) [0 < tA < a_(z)],  
t 

1 0 - J f ( t -  r) O-(r'z-------~)dr [a_(z) < tA < a+(z)], 
f' (t) + 7r ~ ' ~  0t _(z)A_, r 

h~(z,t) 
= f'(t)+ 1 0 [ 0_(r, z) (2.15) ----7- r r'''r'r-Ot~/a_(x) J f ( t -  r)  r dr 

~,_(z)a-1 
t 1 0 [ O+(r, x) 

a+(x)A-1 

In going from the Laplace--Carson transforms to originals in relations (2.13) and (2.14), we used the 
following formulas [5]: 

perfc ( v ~ )  -- 1 ~ ( t > ~ , a > O ) ,  ~/'Pe-'~v -- 1 (t > a).  

If the law of motion for the punch is given, as above, by the Heaviside function, the solution (2.15) is 
simplified and becomes 

o_it,x) [o <tA<a_(x)],  
h~o(z,t_______~) = 6(0 + r t ~  [a_(x) < th  < a+(x)], (2.16) 

O_(t,z) O+(z,t) [ta > a+(z)], 6{0+ ].Z_ 

where 6(t) is the Dirac delta-function. 
Having obtained expressions (2.15) mad (2.16), one can analyze the contact tangential stresses in the 

first problem. From Eqs. (2.15), it is evident that until the contact-stress wave reaches the "observation" point 
under the punch, the stress at this point is proportional to the punch velocity f'(t). The contact tangential 
stress wave arriving at the "observation" point from the nearest punch end has zero stress at the front and 
propagates at the velocity of a transverse wave in the given medium. In addition, after a certain period of 
time, the contact-stress wave arrives at this point from the other punch end. In particular, from relations 
(2.16), which correspond to the case f(t)  - H(t),  it follows that the contact tangential stresses at each point 
under the punch are proportional to  6(t), while for t > 0 before the arrival of the transverse wave from the 
nearest punch end, they are zero. 

The distributions of contact tangential stresses ~(x, t) = Ag-lqa(z,t) are plotted in Fig. 1 for times 
tA = 0.5, 1.0, and 1.5 (curves 1-3). In addition, Fig. 2 illustrates the quantity @(x, t) versus tA at the points 
z = 0, 0.5, and 0.9 (curves 1-3). 
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An important characteristic of solutions of contact problems is the force (2.6) acting on the punch. To 
find the force, we use the fact that, for small A, the zeroth term of the asymptotic solution of the integral 
equation (1.6) is representable in multiplicative form [1]: 

[ l + z  "~ L 1 - - x  x -1 

where the functions ~L,(y,p) and vL(y ,p)  satisfy Eqs. (2.9) and (2.10). Let us first determine the quantity 

1 

NoL(p) = / ~L(z,p)dz. (2.18) 
- 1  

Introducing (2.11), (2.12), and (2.17) in Eq. (2.18) and performing the necessary transformations [1], 
we obtain 

c+ioo e2a/~ -L, ,g-(0) 1 [ 
NoL(P) = g.r ( P ) K - - ~  27ri J aZK2( ia )  dct. (2.19) 

c-ioo 

Assuming that K(a)  = (1 + a=) -1/2, from (2.19) we obtain 

uoL(p) = gfL(p)(2)~-i  + 1). (2.20) 

Applying the inverse Laplace--Carson transform to (2.20), with allowance for the last relation in (2.4) 
we find 

Uo(t)g -1 = 2A-af'(t) + f ( t ) .  (2.21) 

If f ( t )  =_ g ( t )  in Eq. (2.21), then No(t)g -1 = 2A-16(t) + g ( t ) .  
3. We construct a solution of the second problem for small times. It should be taken into account 

that in this case, as was mentioned above, the kernel symbol (1.11) of the integral equation (1.6) is of a more 
complex form than that in the first problem. Moreover, it contains four branching points in the complex plane, 
which significantly complicates factorization of g(r  Nevertheless, the function If(C) (r = u + iv) is positive 
and does not have singular points such as poles and branching points on the real axis. 

Taking into account this fact and also the asymptotic properties of (2.1) and using the Coiter method 
of approximate factorization [6], we approximate the kernel symbol K(r (1.11) by the expression 1 

K(4) ~ V ~  + h21(r 2 + h2) -1, hi = b, h lh~  2 -- 2b(1 - b2). (3.1) 

XAn approximation of the kernel symbol K(() of the form (1.11) that takes into account its behavior over the 
entire complex plane ~ = u + iv is given in [7]. 
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For the function K(~), we can propose a simpler approximation than (3.1): 

K(r ~ ((2 + h~)-,/2, hi = b. (3.2) 

The approximation of the form (3.2) is chosen from the following considerations. First, the branching point of 
function (3.2) coincides with the first branching point of the kernel symbol K(()  of the form (1.11). Therefore, 
one can speak about the approximation of K(C) in the region Iv[ < ha < 1, [u] < oo in the plane of the complex 
variable ( = u + iv. This makes it possible to obtain a physically correct solution, because the propagation 
velocity of the longitudinal wave of contact stresses under the punch coincides with cl [8]. Second, the error 
of this approximation along the real axis does not exceed 6%. 

Introducing K(()  in the form (3.2) in relations (2.11) and (2.19), we arrive at equalities (2.15) and 
(2.21), in which one should replace the parameter A by the expression A = cia -1. Thus, the character of 
contact stresses here is the same as in the first problem, and, hence, it can be illustrated by Figs. 1 and 2. 

In conclusion, we note that the problem of a semi-infinite punch in [8] was solved in approximately the 
same manner, and the factorization of the function K(() (1.11) was taken in the form of the Cauchy integrals. 
The results of [8] are in qualitative agreement with our results. 

Moreover, numerical calculations have shown that the solutions of the problems for small and large 
times coincide in the region t = 2A -1. 

Note that we can construct a solution of the integral equation (1.6) and (1.7) by the method of 
orthogonal functions if we use the spectral relation [9] 

1 

Ko = ,  rek'(0,- )c "(arcc~ 

where Ix I < 1 and ~e = 1/(4~r2), and the orthogonality property of the Mathieu periodic functions. Omitting 
intermediate calculations, we have 

2gIL(p) ~-~t ,,"+1a(2") Fek~n(0'-a~)ce2n(arccosx,_ze). (3.3) 
~~ = ~ /_..~t--*/ "~o Fek2,,(0,-a~) V I - -  X "  n----0 

To obtain now a solution of the main nonstationary problem of pure shear of an elastic haft-space, one 
should take, according to (1.4), the inverse Laplace-Carson transform in (3.3). Taking into account the latter 
relation in (2.4), we write 

t 

~(z, t) = ~ Ot f ( t  - r)h(z, r) dr, 
o (3.4) 

v ' t  ,~-+aaO") Fek2-( O'-~e 
ce2, (arccos z, --a~). h ( z , t ) - - 2  Z. ,~- 'J "'0 

n = 0  

Numerical inversion of the Laplace-Carson transform is performed in the second formula of (3.4), for 
example, by the Papulis method [10]. Thereafter, one can determine the force N0(t) from (2.6) and from the 
first formula of (3.4). 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-00181-a). 
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